Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Rep ; 43(4): 114042, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573858

RESUMO

Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor ß. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.

2.
Nat Commun ; 15(1): 2715, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548742

RESUMO

Extracellular vesicles (EVs) are integral to numerous biological processes, yet it is unclear how environmental factors or interactions among individuals within a population affect EV-regulated systems. In Caenorhabditis elegans, the evolutionarily conserved large EVs, known as exophers, are part of a maternal somatic tissue resource management system. Consequently, the offspring of individuals exhibiting active exopher biogenesis (exophergenesis) develop faster. Our research focuses on unraveling the complex inter-tissue and social dynamics that govern exophergenesis. We found that ascr#10, the primary male pheromone, enhances exopher production in hermaphrodites, mediated by the G-protein-coupled receptor STR-173 in ASK sensory neurons. In contrast, pheromone produced by other hermaphrodites, ascr#3, diminishes exophergenesis within the population. This process is regulated via the neuropeptides FLP-8 and FLP-21, which originate from the URX and AQR/PQR/URX neurons, respectively. Our results reveal a regulatory network that controls the production of somatic EV by the nervous system in response to social signals.


Assuntos
Proteínas de Caenorhabditis elegans , Vesículas Extracelulares , Humanos , Animais , Masculino , Caenorhabditis elegans/genética , Feromônios , Proteínas de Caenorhabditis elegans/genética , Neurônios/fisiologia
3.
ACS Appl Mater Interfaces ; 15(46): 53815-53826, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948095

RESUMO

Defect engineering has proven to be one of the most effective approaches for the design of high-performance electrocatalysts. Current methods to create defects typically follow a top-down strategy, cutting down the pristine materials into fragmented pieces with surface defects yet also heavily destroying the framework of materials that imposes restrictions on the further improvements in catalytic activity. Herein, we describe a bottom-up strategy to prepare free-standing NiFe layered double hydroxide (LDH) nanoplatelets with abundant internal defects by controlling their growth behavior in acidic conditions. Our best-performing nanoplatelets exhibited the lowest overpotential of 241 mV and the lowest Tafel slope of 43 mV/dec for the oxygen evolution reaction (OER) process, superior to the pristine LDHs and other reference cation-defective LDHs obtained by traditional etching methods. Using both material characterization and density functional theory (DFT) simulation has enabled us to develop relationships between the structure and electrochemical properties of these catalysts, suggesting that the enhanced electrocatalytic activity of nanoplatelets mainly results from their defect-abundant structure and stable layered framework with enhanced exposure of the (001) surface.

4.
Medicine (Baltimore) ; 102(42): e35460, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861538

RESUMO

OBJECTIVE: This study aimed to use network pharmacology to investigate the molecular mechanisms and potential targets of naringenin (NR) for nonalcoholic fatty liver disease (NAFLD) treatment to offer new drug development ideas. METHODS: The structure and compound information of NR were obtained from PubChem and the traditional Chinese medicine system pharmacology database and analysis platform. The traditional Chinese medicine system pharmacology database and analysis platform Database, Comparative Toxicogenomics Database and Encyclopedia of Traditional Chinese Medicine Database were then used to predict the related targets of NR. Online mendelian inheritance in man, Disgenet, Gene cards, The therapeutic target database and Drug bank were used to screen NAFLD targets, and the intersection analysis was performed with the targets of NR active components to obtain the targets of NR in the treatment of NAFLD. The protein-protein interaction network of therapeutic targets was constructed by protein-protein interaction networks functional enrichment analysis 11.0, and gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis of therapeutic targets was performed by Metascape platform. RESULTS: In this study, 171 NR targets and 1748 potential targets of NAFLD were screened, and 89 crossover targets and 16 core targets were screened and finally obtained. A total of 176 GO items were obtained by GO enrichment analysis (P < .05), including 389 biological process, 6 cell composition and 30 molecular function. A total of 137 signaling pathways were obtained by Kyoto encyclopedia of genes and genomes pathway enrichment and screening (P < .05). The core targets of NR in the treatment of NAFLD are TP53, CASP3, PRKCA, AKT1, RELA, PPARG, NCOA2, CYP1A1, ESR1, MAPK3, STAT3, JAK1, MAPK1, TNF, PPARA and PRKCB. Enrichment analysis showed that NR mainly involved in biological processes such as cellular response to nitrogen compound, regulation of miRNA transcription and negative regulation of miRNA-mediated gene silencing. It regulates Hepatitis B, Lipid and atherosclerosis, cytomegalovirus infection, Hepatitis C, AGE-RAGE signaling pathway in diabetic patients complications and other ways play a role in the treatment of NAFLD. CONCLUSIONS: The therapeutic effect of NR on NAFLD has the characteristics of multi-targets and multi-pathways, which provides a preliminary theoretical basis for clinical trials and the development of new drugs.


Assuntos
Medicamentos de Ervas Chinesas , Flavanonas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Farmacologia em Rede , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Medicina Tradicional Chinesa
5.
J Am Chem Soc ; 145(21): 11611-11621, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192367

RESUMO

Nucleosides are essential cornerstones of life, and nucleoside derivatives and synthetic analogues have important biomedical applications. Correspondingly, production of non-canonical nucleoside derivatives in animal model systems is of particular interest. Here, we report the discovery of diverse glucose-based nucleosides in Caenorhabditis elegans and related nematodes. Using a mass spectrometric screen based on all-ion fragmentation in combination with total synthesis, we show that C. elegans selectively glucosylates a series of modified purines but not the canonical purine and pyrimidine bases. Analogous to ribonucleosides, the resulting gluconucleosides exist as phosphorylated and non-phosphorylated forms. The phosphorylated gluconucleosides can be additionally decorated with diverse acyl moieties from amino acid catabolism. Syntheses of representative variants, facilitated by a novel 2'-O- to 3'-O-dibenzyl phosphoryl transesterification reaction, demonstrated selective incorporation of different nucleobases and acyl moieties. Using stable-isotope labeling, we further show that gluconucleosides incorporate modified nucleobases derived from RNA and possibly DNA breakdown, revealing extensive recycling of oligonucleotide catabolites. Gluconucleosides are conserved in other nematodes, and biosynthesis of specific subsets is increased in germline mutants and during aging. Bioassays indicate that gluconucleosides may function in stress response pathways.


Assuntos
Nucleosídeos , Ribonucleosídeos , Animais , Caenorhabditis elegans , Oligonucleotídeos
6.
Nat Chem Biol ; 19(2): 141-150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36216995

RESUMO

The neurotransmitter serotonin plays a central role in animal behavior and physiology, and many of its functions are regulated via evolutionarily conserved biosynthesis and degradation pathways. Here we show that in Caenorhabditis elegans, serotonin is abundantly produced in nonneuronal tissues via phenylalanine hydroxylase, in addition to canonical biosynthesis via tryptophan hydroxylase in neurons. Combining CRISPR-Cas9 genome editing, comparative metabolomics and synthesis, we demonstrate that most serotonin in C. elegans is incorporated into N-acetylserotonin-derived glucosides, which are retained in the worm body and further modified via the carboxylesterase CEST-4. Expression patterns of CEST-4 suggest that serotonin or serotonin derivatives are transported between different tissues. Last, we show that bacterial indole production interacts with serotonin metabolism via CEST-4. Our results reveal a parallel pathway for serotonin biosynthesis in nonneuronal cell types and further indicate that serotonin-derived metabolites may serve distinct signaling functions and contribute to previously described serotonin-dependent phenotypes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Serotonina , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Comportamento Animal
8.
Proc Natl Acad Sci U S A ; 119(48): e2201783119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36413500

RESUMO

Trimethylglycine, or betaine, is an amino acid derivative found in diverse organisms, from bacteria to plants and animals, with well-established functions as a methyl donor and osmolyte in all cells. In addition, betaine is found in the nervous system, though its function there is not well understood. Here, we show that betaine is synthesized in the nervous system of the nematode worm, Caenorhabditis elegans, where it functions in the control of different behavioral states. Specifically, we find that betaine can be produced in a pair of interneurons, the RIMs, and packed into synaptic vesicles by the vesicular monoamine transporter, CAT-1, expressed in these cells. Mutant animals defective in betaine synthesis are unable to control the switch from local to global foraging, a phenotype that can be rescued by restoring betaine specifically to the RIM neurons. These effects on behavior are mediated by a newly identified betaine-gated chloride channel, LGC-41, which is expressed broadly in the navigation circuit. These results implicate neuronally produced betaine as a neuromodulator in vivo and suggest a potentially similar role for betaine in nervous systems of other animals.


Assuntos
Proteínas de Caenorhabditis elegans , Canais Iônicos de Abertura Ativada por Ligante , Animais , Canais Iônicos de Abertura Ativada por Ligante/genética , Betaína/farmacologia , Betaína/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
9.
Open Med (Wars) ; 17(1): 1509-1514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237832

RESUMO

Dexamethasone can be used to prevent nausea and vomiting after surgery, but there is concern that it may induced perineal irritation. The aim of this study was to investigate the attenuation effect of dilution and slow injection on dexamethasone-induced perineal irritation. In this prospective, randomized, double-blind study, a total of 400 patients were enrolled and allocated into four groups: Group I, receiving 2 mL dexamethasone (5 mg/mL), Group II, receiving 5 mL dexamethasone (2 mg/mL), Group III, receiving 10 mL dexamethasone (1 mg/mL), and Group IV receiving 20 mL dexamethasone (0.5 mg/mL). Dexamethasone was diluted with 5% glucose. The injection time of dexamethasone was less than 2 s in Group I, while it was 30 s in Groups II, III, and IV. The incidence, onset, duration, and severity of perineal irritation were recorded. The incidence of dexamethasone-induced perineal irritation was 49, 33, 17, and 15% in Groups I, II, III, and IV, respectively. Group IV had less severity than Group I in mild and moderate perineal irritation (P < 0.008). The onset and duration of perineal irritation of Groups II, III, and IV were significantly improved compared to Group I (P < 0.001). Dexamethasone-induced perineal irritation can be alleviated by dilution of dexamethasone to 0.5 mg/mL with 5% glucose combined with prolonged injection time of 30 s.

10.
Comput Math Methods Med ; 2022: 9018939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35761840

RESUMO

Objective: To explore the efficacy of digestive endoscopy (DEN) based on artificial intelligence (AI) system in diagnosing early esophageal carcinoma. Methods: The clinical data of 300 patients with suspected esophageal carcinoma treated in our hospital from January 2018 to January 2020 were retrospectively analyzed; among them, 198 were diagnosed with esophageal carcinoma after pathological examination, and 102 had benign esophageal lesion. An AI system based on convolutional neural network (CNN) was adopted to assess the DEN images of patients with early esophageal carcinoma. A total of 200 patients (148 with early esophageal carcinoma and 52 with benign esophageal lesion) were selected as the learning group for the Inception V3 image classification system to learn; and the rest 100 patients (50 with early esophageal carcinoma and 50 with benign esophageal lesion) were included in the diagnosis group for the Inception V3 system to assist the narrow-band imaging (NBI) with diagnosis. The diagnosis results from Inception V3-assisted NBI were compared with those from imaging physicians, and the diagnostic efficacy diagram was drawn. Results: The diagnosis rate of AI-NBI was significantly faster than that of physician diagnosis (0.02 ± 0.01 vs. 5.65 ± 0.32 s (mean rate of two physicians), P < 0.001); between AI-NBI diagnosis and physician diagnosis, no statistical differences in sensitivity (90.0% vs. 92.0%), specificity (92.0% vs. 94.0%), and accuracy (91.0% vs. 93.0%) were observed (P > 0.05); and according to the ROC curves, AUC (95% CI) of AI-NBI diagnosis = 0.910 (0.845-0.975), and AUC (95% CI) of physician diagnosis = 0.930 (0.872-0.988). Conclusion: CNN-based AI system can assist NBI in screening early esophageal carcinoma, which has a good application prospect in the clinical diagnosis of early esophageal carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Inteligência Artificial , Carcinoma de Células Escamosas/patologia , Endoscópios , Neoplasias Esofágicas/diagnóstico por imagem , Humanos , Imagem de Banda Estreita/métodos , Estudos Retrospectivos
11.
J Colloid Interface Sci ; 610: 583-591, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903355

RESUMO

Silicon-based anode materials with high theoretical capacity have great challenges of enormous volume expansion and poor electronic conductivity. Herein, a novel dual carbon confined SiOx/C@void@Si/C yolk-shell monodisperse nanosphere with void space have been fabricated through hydrothermal reaction, carbonization, and in-situ low-temperature aluminothermic reduction. Furthermore, the O/Si ratio and void space between SiOx/C core and Si/C shell can be effectively tuned by the length of aluminothermic reduction time. The SiOx/C core plays a role of maintaining the spherical structure and the void space can accommodate the volume expansion of Si. Moreover, the inner and outer carbons not only alleviate volume variation of SiOx and Si but also enhance the electrical conductivity of composites. Benefiting from the synergy of the double carbon and void space, the optimized VSC-14 anode affords prominent cycle stability with reversible capacity of 1094 mAh g-1 after 550 cycles at 200 mA g-1. By pre-lithiation treatment, the VSC-14 achieves an initial Coulombic efficiency of 93.27% at 200 mA g-1 and a reversible capacity of 348 mAh g-1 at 5 A g-1 after 4000 cycles. Furthermore, the pouch cell using VSC-14 anode and LiFePO4 cathode delivers a reversible capacity of 138 mAh g-1 at 0.2C. We hope this strategy can provide a scientific method to synthesis yolk-shell Si-based materials.

12.
Mater Horiz ; 8(10): 2823-2833, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34486636

RESUMO

Whilst applying a coating layer to a polymer film is a routine approach to enhance the gas barrier properties of the film, it is counter-intuitive to consider that the gas barrier performance of the film would improve by ageing the coating dispersion for weeks before application. Herein, we report that the oxygen barrier performance of a 12 µm PET film coated with a dispersion of inorganic nanosheets in polyvinyl alcohol can be significantly enhanced by ageing this coating dispersion for up to 8 weeks before application. We found up to a 37-fold decrease in the oxygen transmission rate (OTR) of the PET coated film using aged dispersions of [Mg0.66Al0.33(OH)2](NO3)0.33 layered double hydroxide nanosheets (Mg2Al-LDH NS) in polyvinyl alcohol (PVA) compared to the film coated with an equivalent freshly prepared LDH/PVA dispersion. A limiting OTR value of 0.31 cc m-2 day-1 was achieved using the PET film coated with a 3 week aged LDH NS/PVA dispersion. X-ray diffraction experiments show that the degree of in plane alignment of LDH NS on the PET film surface increased significantly from 70.6 ± 0.6 to 86.7 ± 0.6 (%) (100% represents complete alignment of LDH NS platelets on the film surface) for the 4 week aged dispersion compared to the freshly prepared layer. We postulate that when the Mg2Al-LDH NS are aged in PVA the coiled PVA aggregates start to unwrap and attach onto the Mg2Al-LDH NS through hydrogen bonding and eventually form a hydrogen bonded ordered network that facilitates the alignment of nanosheet dispersions during the coating process. Our results suggest that the ageing of inorganic nanosheet dispersions in PVA or other potential hydrogen bonding adhesive systems could be a general approach to improve the alignment of the nanosheets on the polymer film surface once applied and thus improve their performance characteristics for barrier coating applications.

13.
J Am Chem Soc ; 143(36): 14676-14683, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460264

RESUMO

The recently discovered modular glucosides (MOGLs) form a large metabolite library derived from combinatorial assembly of moieties from amino acid, neurotransmitter, and lipid metabolism in the model organism C. elegans. Combining CRISPR-Cas9 genome editing, comparative metabolomics, and synthesis, we show that the carboxylesterase homologue Cel-CEST-1.2 is responsible for specific 2-O-acylation of diverse glucose scaffolds with a wide variety of building blocks, resulting in more than 150 different MOGLs. We further show that this biosynthetic role is conserved for the closest homologue of Cel-CEST-1.2 in the related nematode species C. briggsae, Cbr-CEST-2. Expression of Cel-cest-1.2 and MOGL biosynthesis are strongly induced by starvation conditions in C. elegans, one of the premier model systems for mechanisms connecting nutrition and physiology. Cel-cest-1.2-deletion results in early death of adult animals under starvation conditions, providing first insights into the biological functions of MOGLs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Glucosídeos/biossíntese , Inanição/metabolismo , Acilação , Animais , Glucosídeos/química , Metabolômica , ortoaminobenzoatos/metabolismo
14.
Plant Signal Behav ; 16(10): 1932319, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34176421

RESUMO

Autophagy is an important cytoprotective process that mediates degradation of dysfunctional or unnecessary cellular components. In the process of autophagy, a double-membrane organelle termed the autophagosome is formed to sequestrate portions of cytoplasm and subsequently delivered into lysosome or vacuole for degradation. The accumulation of autophagic bodies in the vacuoles after treatment with concanamycin A (ConcA) is a widely used protocol for monitoring the occurrence of autophagy in plants. Here, it was found that the cytoplasmic soluble GFP was accumulated in vacuoles upon ConcA treatment. Importantly, the GFP signal showed good colocalization with the autophagic marker mCherry-ATG8f in vacuoles based on two commonly used methods, the Pearson-Spearman correlation colocalization analysis and the plot profile analysis. Further results showed that the free GFP did not interact with ATG8s. Thus, analysis of accumulation and colocalization only in vacuoles is not a trustworthy way to judge whether degradation of cytoplasmic protein is dependent on the selective autophagy pathway in plants. In this short perspective, we propose several primary steps to distinguish that the cytoplasmic proteins are degraded by selective or bulk autophagy, hoping they could contribute to identify and clarify the selective autophagic cargos and receptors in plants.


Assuntos
Autofagia , Fagossomos/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Macrolídeos/farmacologia , Solubilidade , Estresse Fisiológico
15.
Elife ; 92020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063667

RESUMO

Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.


Assuntos
Caenorhabditis elegans/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Lisossomos/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Hidrolases de Éster Carboxílico/genética , Glucosídeos/metabolismo , Redes e Vias Metabólicas , Organelas/metabolismo , Alinhamento de Sequência
16.
Sci Rep ; 10(1): 11472, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651431

RESUMO

Crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling plays an important role in regulation of plant senescence. Our previous work found that SA could delay methyl jasmonate (MeJA)-induced leaf senescence in a concentration-dependent manner. Here, the effect of low concentration of SA (LCSA) application on MeJA-induced leaf senescence was further assessed. High-throughput sequencing (RNA-Seq) results showed that LCSA did not have dominant effects on the genetic regulatory pathways of basal metabolism like nitrogen metabolism, photosynthesis and glycolysis. The ClusterONE was applied to identify discrete gene modules based on protein-protein interaction (PPI) network. Interestingly, an autophagy-related (ATG) module was identified in the differentially expressed genes (DEGs) that exclusively induced by MeJA together with LCSA. RT-qPCR confirmed that the expression of most of the determined ATG genes were upregulated by LCSA. Remarkably, in contrast to wild type (Col-0), LCSA cannot alleviate the leaf yellowing phenotype in autophagy defective mutants (atg5-1 and atg7-2) upon MeJA treatment. Confocal results showed that LCSA increased the number of autophagic bodies accumulated in the vacuole during MeJA-induced leaf senescence. Collectively, our work revealed up-regulation of autophagy by LCSA as a key regulator to alleviate MeJA-induced leaf senescence.


Assuntos
Envelhecimento/genética , Autofagia/genética , Folhas de Planta/genética , Ácido Salicílico/metabolismo , Acetatos/farmacologia , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , RNA-Seq , Transdução de Sinais/efeitos dos fármacos
17.
Curr Biol ; 30(13): 2602-2607.e2, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32442457

RESUMO

Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.


Assuntos
Caenorhabditis elegans/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Densidade Demográfica , Reprodução , Atrativos Sexuais/metabolismo , Transdução de Sinais
19.
ACS Appl Mater Interfaces ; 12(9): 10973-10982, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045205

RESUMO

We report a method to rationally control the aspect ratio of layered double hydroxide for use as a barrier coating for food packaging films. The reconstruction of a Mg2Al-layered double oxide (LDO) in concentrated aqueous glycine solutions produces dispersions of Mg2Al-LDH nanosheets. The nanosheet thickness decreases and diameter increases with increasing reconstruction time from 16 to 96 h. We observe a limiting nanosheet aspect ratio of ca. 336 ± 170. These Mg2Al-LDH nanosheets can be dispersed in PVA to give a water-based dispersion that can be used to coat flexible polymeric films. Oxygen transmission rate (OTR) of a PET film decreases when the thickness of the dried coated layer increases, an OTR of <0.005 mL·m-2·day-1 is observed for a coating with thickness of 1175 ± 101 nm.

20.
Inorg Chem ; 59(2): 1204-1210, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31899618

RESUMO

A layered prism is an ideal system for fundamental studies due to its unique structure with uniform-sized sheets. However, there are very limited reports in the last few decades on the preparation of such materials. In this contribution, we report for the first time the preparation of α-ZrP intercalation compound-based hexagonal prisms. Preferential crystal growth perpendicular to the (001) crystal plane of α-ZrP intercalation compounds was achieved by incorporating a complexing agent and a layer growth coordinator into a crystal growth reaction system. With the presence of a layer growth coordinator to coordinate the crystal growth perpendicular to the (001) crystal plane and the presence of a complexing agent to slow down the crystal growth rate, the previously unknown layer growth coordination effect is revealed. After a facile ion exchange treatment, pure α-ZrP hexagonal prisms can also be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...